

CJ Series EtherNet/IPTM Connection Guide

Yamaha Motor Co., Ltd. RCX Series Robot Controller

About Intellectual Property Rights and Trademarks Microsoft product screen shots reprinted with permission from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the USA and other countries. ODVA and EtherNet/ IP^{TM} are trademarks of ODVA. Company names and product names in this document are the trademarks or registered trademarks of their respective companies.

Table of Contents

1. Rel	ated Manuals	
2. Ter	ms and Definitions	2
3. Pre	ecautions	3
4. Ove	erview	4
5. Ap _l	plicable Devices and Device Configuration	5
5.1.	Applicable Devices	5
5.2.	Device Configuration	6
6. Eth	erNet/IP Settings	8
6.1.	Communications Parameter Settings	8
6.2.	Allocating the Tag Data Links	8
7. Eth	erNet/IP Connection Procedure	10
7.1.	Work Flow	10
7.2.	Setting Up the YAMAHA MOTOR Robot Controller	12
7.3.	Setting Up the PLC	16
7.4.	Setting Up the Network	27
7.5.	Checking the EtherNet/IP Communications	39
8. Init	ialization Method	45
8.1.	Initializing the PLC	45
8.2.	Initializing the YAMAHA MOTOR Robot Controller	46
9. Rev	vision History	47

1. Related Manuals

The table below lists the manuals related to this document.

To ensure system safety, make sure to always read and heed the information provided in all Safety Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for each device which is used in the system.

Cat. No.	Model	Manual name
W472	CJ2M-CPU[][]	CJ-series CJ2 CPU Unit Hardware User's Manual
	CJ2H-CPU6[]	
	CJ2H-CPU6[]-EIP	
W473	CJ2M-CPU[][]	CJ-series CJ2 CPU Unit Software User's Manual
	CJ2H-CPU6[]	
	CJ2H-CPU6[]-EIP	
W465	CJ1W-EIP21	EtherNet/IP TM Units Operation Manual
	CJ2H-CPU6[]-EIP	
	CJ2M-CPU3[]	
W446	-	CX-Programmer Operation Manual
E123	RCX240	YAMAHA 4-AXIS ROBOT CONTROLLER
		RCX240 User's Manual
E122	RCX240	YAMAHA NETWORK BOARD
		EtherNet/IP User's Manual

2. Terms and Definitions

Term	Explanation and Definition				
Node	Controllers and devices are connected to the EtherNet/IP network via the				
	EtherNet/IP ports. The EtherNet/IP recognizes each EtherNet/IP port				
	connected to the network as one node.				
	When a device with two EtherNet/IP ports is connected to the				
	EtherNet/IP network, the EtherNet/IP recognizes this device as two nodes.				
	The EtherNet/IP achieves the communications between controllers or the				
	communications between controllers and devices by exchanging data				
	between these nodes connected to the network.				
Tag	A minimum unit of the data that is exchanged on the EtherNet/IP network				
	is called a tag. The tag is defined as a network variable or as a physical				
	address, and it is allocated to the memory area of each device.				
Tag set	In the EtherNet/IP network, a data unit that consists of two or more tags				
	can be exchanged. The data unit consisting of two or more tags for the				
	data exchange is called a tag set. Up to eight tags can be configured per				
	tag set for OMRON controllers.				
Tag data link	In the EtherNet/IP, the tag and tag set can be exchanged cyclically				
	between nodes without using the user program. This standard feature on				
	the EtherNet/IP is called a tag data link.				
Connection	A connection is used to exchange data as a unit within which data				
	concurrency is maintained. The connection consists of tags or tag sets.				
	Creating the concurrent tag data link between the specified nodes is				
	called a "connection establishment". When the connection is established,				
	the tags or tag sets that configure the connection are exchanged				
	between the specified nodes concurrently.				
Originator and	To perform tag data links, one node requests the opening of a				
Target	communications line called a "connection".				
	The node that requests opening the connection is called an "originator",				
	and the node that receives the request is called a "target".				
Tag data link	The tag data link parameter is the setting data to perform the tag data				
parameter	link. It includes the data to set tags, tag sets, and connections.				
EDS file	A file that describes the number of I/O points for the EtherNet/IP device				
	and the parameters that can be set via EtherNet/IP.				

3. Precautions

- (1) Understand the specifications of devices which are used in the system. Allow some margin for ratings and performance. Provide safety measures, such as installing safety circuit in order to ensure safety and minimize risks of abnormal occurrence.
- (2) To ensure system safety, always read and heed the information provided in all Safety Precautions, Precautions for Safe Use, and Precaution for Correct Use of manuals for each device used in the system.
- (3) The user is encouraged to confirm the standards and regulations that the system must conform to.
- (4) It is prohibited to copy, to reproduce, and to distribute a part or the whole of this document without the permission of OMRON Corporation.
- (5) The information contained in this document is current as of June 2014. It is subject to change without notice for improvement.

The following notation is used in this document.

Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury or property damage.

Precautions for Correct Use

Precautions on what to do and what not to do to ensure proper operation and performance.

Additional Information

Additional information to read as required.

This information is provided to increase understanding or make operation easier.

Symbol

The triangle symbol indicates precautions (including warnings). The specific operation is shown in the triangle and explained in text. This example indicates a general precaution.

4. Overview

This document describes the procedure for connecting Robot Controller (RCX series) (hereinafter referred to as Robot Controller) of Yamaha Motor Co., Ltd. (hereinafter referred to as YAMAHA MOTOR) to CJ-series Programmable Controller + EtherNet/IP Unit (hereinafter referred to as PLC) of OMRON Corporation (hereinafter referred to as OMRON), and the procedure to check their connection.

Refer to Section 6 EtherNet/IP Settings and Section 7 EtherNet/IP Connection Procedure to understand the setting method and key points to operate the tag data link for EtherNet/IP. In this document, CJ-series EtherNet/IP Unit and the built-in EtherNet/IP port of CJ-series CJ2 CPU Unit are collectively called as the "EtherNet/IP Unit".

5. Applicable Devices and Device Configuration

5.1. Applicable Devices

The applicable devices are as follows:

Manufacturer	Name	Model		
OMRON	CJ2 CPU Unit	CJ2[]-CPU[][]		
OMRON	EtherNet/IP Unit	CJ1W-EIP21		
		CJ2H-CPU6[]-EIP		
		CJ2M-CPU3[]		
YAMAHA	Robot Controller	RCX240		
MOTOR	(4-axis Controller)	RCX240S		
YAMAHA	Robots:			
MOTOR	Single-axis robot	• FLIP-X series		
	Linear single-axis robot	PHASER series		
	Cartesian robot	XY-X series		
	SCARA robot	YK-XG series		
	Pick & place robot	• YP-X series		

Precautions for Correct Use

As applicable devices above, the devices with the models and versions listed in *Section 5.2.* are actually used in this document to describe the procedure for connecting devices and checking the connection.

You cannot use devices with versions lower than the versions listed in Section 5.2.

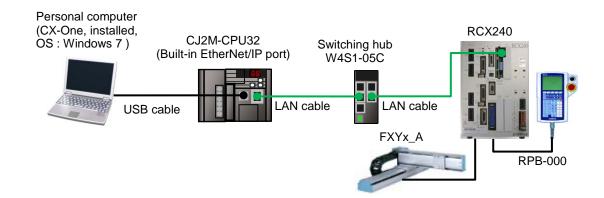
To use the above devices with versions not listed in *Section 5.2* or versions higher than those listed in *Section 5.2*, check the differences in the specifications by referring to the manuals before operating the devices.

Additional Information

This document describes the procedure to establish the network connection.

Except for the connection procedure, it does not provide information on operation, installation or wiring method. It also does not describe the functionality or operation of the devices.

Refer to the manuals or contact the device manufacturer.


(Yamaha Motor Co., Ltd. http://global.yamaha-motor.com/business/robot/)

This URL is the latest address at the time of this document creation.

Contact each device manufacturer for the latest information.

5.2. Device Configuration

The hardware components to reproduce the connection procedure of this document are as follows:

Manufacturer	Name	Model	Version
OMRON	CPU Unit	CJ2M-CPU32	Ver.2.0
	(Built-in EtherNet/IP port)		(Ver.2.12)
OMRON	Power Supply Unit	CJ1W-PA202	
OMRON	Switching hub	W4S1-05C	Ver.1.00
OMRON	CX-One	CXONE-AL[][]C-V4 /AL[][]D-V4	Ver.4.[][]
OMRON	CX-Programmer	(Included in CX-One)	Ver.9.51
OMRON	Network Configurator	(Included in CX-One)	Ver.3.56
-	Personal computer (OS: Windows 7)	-	
-	USB cable (USB 2.0 type B connector)	-	
-	LAN cable (STP (shielded, twisted-pair) cable of Ethernet category 5 or higher)	-	
YAMAHA MOTOR	Robot Controller (EtherNet/IP Compatible Module mounted)	RCX240	Ver.10.72
YAMAHA MOTOR	Programming box	RPB-000	Ver.5.13
YAMAHA MOTOR	Robot	FXYx_A	
YAMAHA MOTOR	EDS file	YAMAHA RCX EIP.eds	Ver.1.1

Precautions for Correct Use

Prepare the corresponding EDS file beforehand.

The latest EDS file can be downloaded from the YAMAHA MOTOR website.

(http://global.yamaha-motor.com/business/robot/0002.html)

Contact YAMAHA MOTOR if the file is not available.

Precautions for Correct Use

Update the CX-Programmer and Network Configurator to the versions specified in this section or higher versions using the auto update function.

If a version not specified in this section is used, the procedures described in *Section 7* and subsequent sections may not be applicable. In that case, use the equivalent procedures described in the *CX-Programmer Operation Manual* (Cat. No. W446) and Network Configurator Online Help.

Additional Information

The system configuration in this document uses USB for the connection between the Personal computer and PLC. For information on how to install the USB driver, refer to *A-5 Installing the USB Driver* of the *CJ-series CJ2 CPU Unit Hardware User's Manual* (Cat. No. W472).

6. EtherNet/IP Settings

This section describes specifications such as the communications parameter setting and the tag data link allocation that are set in this document.

6.1. Communications Parameter Settings

The communications parameter required connecting the PLC and the Robot Controller via EtherNet/IP is given below.

Setting item	PLC (EtherNet/IP Unit) (node 1)	Robot Controller (EtherNet/IP Compatible Module) (node 2)		
Unit number	0	-		
Node address	1	2		
IP address	192.168.250.1	192.168.250.2		
Subnet mask	255.255.255.0	255.255.255.0		

6.2. Allocating the Tag Data Links

With the PLC, tag data links are allocated for the Robot Controller as shown below.

Output area (PLC to Robot Controller: 48 bytes)

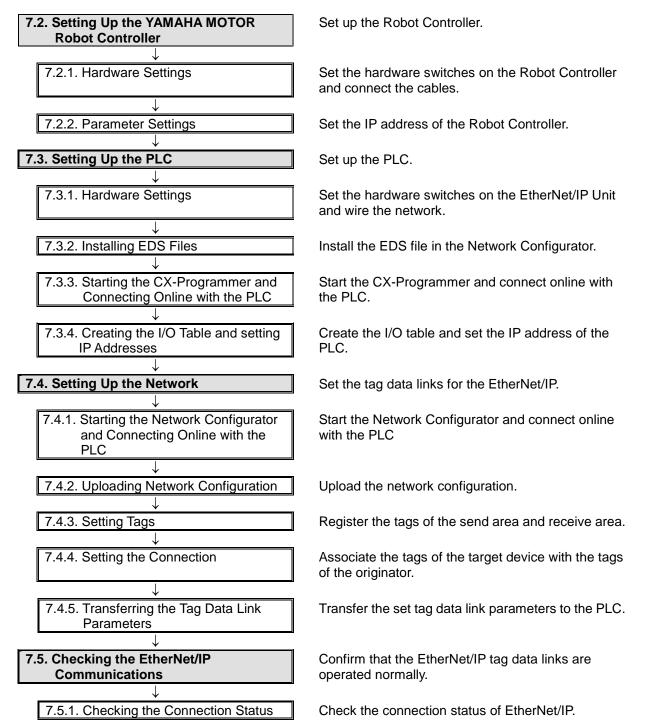
(PLC to Robot Controller, 46 bytes)				
D10000	Word input (Dedicated input)			
to	SIW(0) to SIW(1)			
D10001	(n to n+3)			
D10002	Word input (General-purpose			
to	input)			
D10015	SIW(2) to SIW(15)			
	(n+4 to n+31)			
D10016	Bit input (* see the next page)			
	SI(00) to SI(17)			
	(n+32 to n+33)			
D10017	Bit input (General-purpose			
to	input)			
D10022	SI(20) to SI(157)			
	(n+34 to n+45)			
D10023	Bit input (Reserved)			
	(n+46 to n+47)			

Input area (Robot Controller to PLC: 48 bytes)

D10100	Word output (Dedicated output)
to	SOW(0) to SOW(1)
D10101	(m to m+3)
D10102	Word output (General-purpose
to	output)
D10115	SOW(2) to SOW(15)
	(m+4 to m+31)
D10116	Bit output (* see the next page)
	SO(00) to SO(17)
	(m+32 to m+33)
D10117	Bit output (General-purpose
to	output)
D10122	SO(20) to SO(157)
	(m+34 to m+45)
D10123	Bit output (Reserved)
	(m+46 to m+47)

* The following table shows detailed allocation of bit inputs (SI(00) to SI(17)) as well as bit outputs (SO(00) to SO(17) for the Robot Controller.

Master → Slave		Slave → Master					
Address	Bit		Signal name	Address	Bit	Signal name	
	0	SI(00)	Emergency stop input	m+32	0	SO(00)	Emergency stop input status output
	1	SI(01)	Servo ON input		1	SO(01)	CPU_OK status output
	2	SI(02)	Service mode input		2	SO(02)	Servo ON status output
n+32	3		Reserved.		3	SO(03)	Alarm status output
11+32	4		Reserved.	111+32	4		Reserved.
	5	SI(05)	I/O command execution trigger input		5		Reserved.
	6		Reserved.		6		Reserved.
	7		Reserved.		7		Reserved.
	0	SI(10)	Sequence control input	m+33	0	SO(10)	AUTO mode status output
	1	SI(11)	Interlock input		1	SO(11)	Return-to-origin complete status output
	2	SI(12)	Start input		2	SO(12)	Sequence program execution status output
n+33	3	SI(13)	AUTO mode input		3	SO(13)	Robot program execution status output
	4	SI(14)	Return-to-origin input		4	SO(14)	Program reset status output
	5	SI(15)	Program reset input		5		Reserved.
	6	SI(16)	MANUAL mode input		6	SO(16)	I/O command execution judgment output
	7	SI(17)	Absolute reset / Return-to-origin input *1		7	SO(17)	Output during I/O command execution


7. EtherNet/IP Connection Procedure

This section describes the procedure for connecting the Robot Controller to the PLC via EtherNet/IP.

This document explains the procedures for setting up the Robot Controller and the PLC from the factory default setting. For the initialization, refer to Section 8 Initialization Method.

7.1. Work Flow

Take the following steps to operate the tag data link for EtherNet/IP.

7.5.2 Checking the Data that are Sent and Received

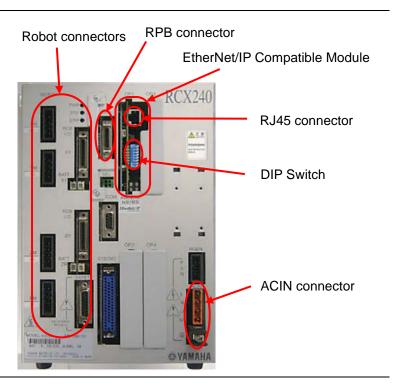
Confirm that the correct data are sent and received.

7.2. Setting Up the YAMAHA MOTOR Robot Controller

Set up the Robot Controller.

7.2.1. Hardware Settings

Set the hardware switches on the Robot Controller and connect the cables.

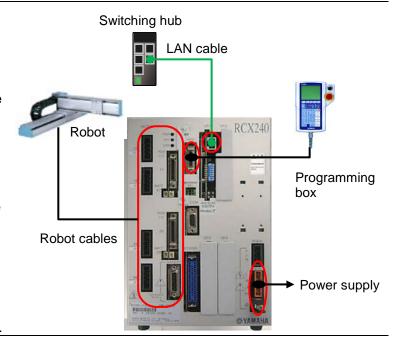

It is assumed that the EtherNet/IP Compatible Module is already mounted on the optional port "OP.1" at the time of shipment.

Precautions for Correct Use

Make sure that the power supply is OFF when you perform the setting up.

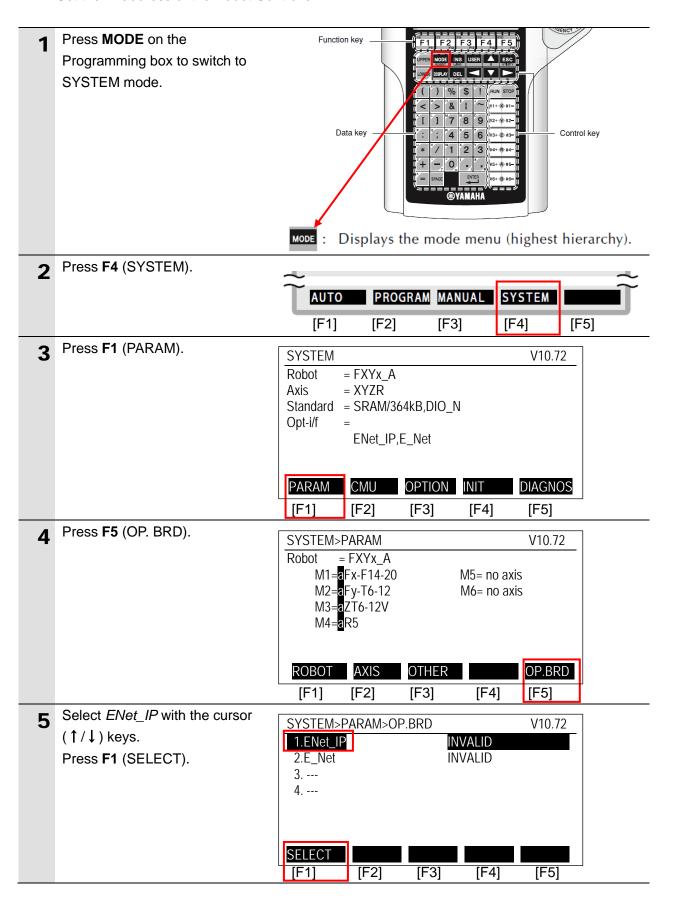
- 1 Make sure that the power supply to the Robot Controller is OFF.
 - *If the power supply is turned ON, settings may not be applicable as described in the following procedures.
- 2 Check the position of the switches and the connectors by referring to the right figure.

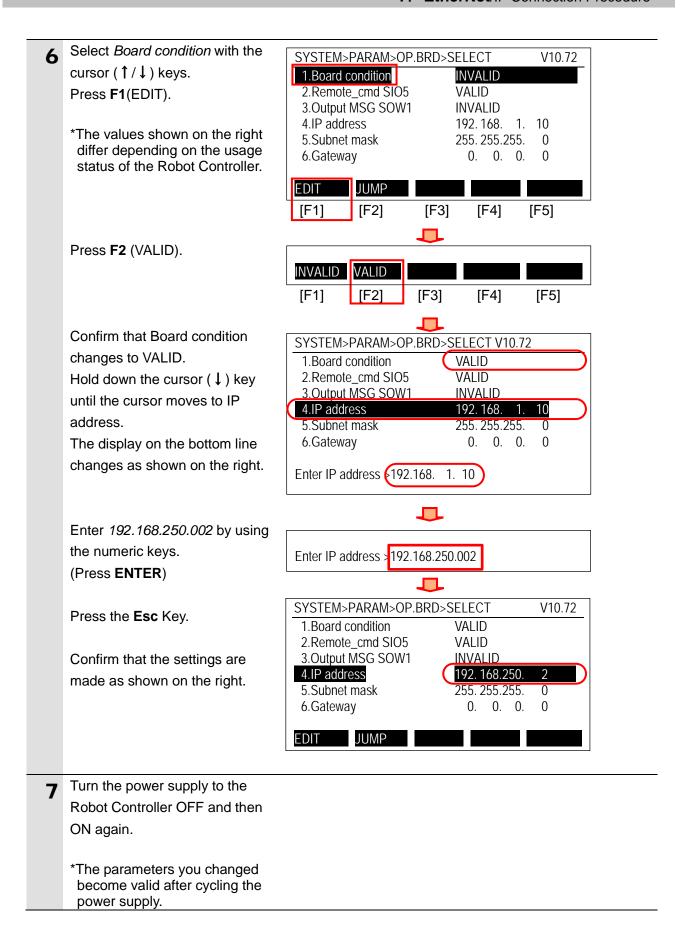
- 3 Since DIP switches on the EtherNet/IP Compatible Module are not used, confirm that all the DIP switches are turned OFF.
 - *For information on EtherNet/IP Compatible Module, refer to the YAMAHA NETWORK BOARD EtherNet/IP User's Manual (Cat. No. E122).


Connect the RJ45 connector on the EtherNet/IP Compatible Module to the Switching hub with a LAN cable.

Connect the Power supply cable to the ACIN connector.

Connect the Programming box (RPB-000) to the RPB connector.


Connect the Robot cables to the Robot connectors.


- *For information on how to connect the cables, refer to Chapter 3 Installation of the YAMAHA 4-AXIS ROBOT CONTROLLER RCX240 User's Manual (Cat. No. E123).
- Turn ON the power supply to the Robot Controller.

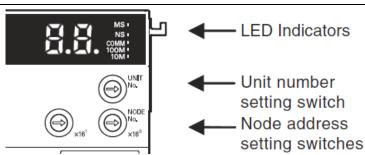
7.2.2. Parameter Settings

Set the IP address of the Robot Controller.

7.3. Setting Up the PLC

Set up the PLC.

7.3.1. Hardware Settings


Set the hardware switches on the EtherNet/IP Unit and wire the network.

Precautions for Correct Use

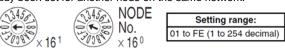
Make sure that the power supply is OFF when you perform the setting up.

- Make sure that the power supply to the PLC is OFF.
 - *If the power supply is turned ON, settings may not be applicable as described in the following procedures.
- 2 Check the position of the hardware switches on the front panel of the EtherNet/IP Unit by referring to the right figure.

Set the Unit number setting switch to 0.

The unit number is used to identify individual CPU Bus Units when more than one CPU Bus Unit is mounted to the same PLC. Use a small screwdriver to make the setting, taking care not to damage the rotary switch. The unit number is factory-set to 0.

Set the Node address setting switches to the following default settings.

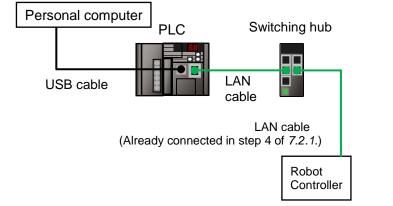

settings. [NODE No.x16¹]: 0

*Set the IP address to 192.168.250.1.

[NODE No.x16⁰]:1

*By default, the first to third octets of the local IP address are fixed to 192.168.250. The fourth octet is the values that are set with the Node address setting switches.

With the FINS communications service, when there are multiple EtherNet/IP Units connected to the Ethernet network, the EtherNet/IP Units are identified by node addresses. Use the node address switches to set the node address between 01 and FE hexadecimal (1 to 254 decimal). Do not set a number that has already been set for another node on the same network.


The left switch sets the sixteens digit (most significant digit) and the right switch sets the ones digit (least significant digit). The node address is factory-set to 01.

Default IP address = 192.168.250.node address

With the factory-default node address setting of 01, the default IP address is

192.168.250.1.

Connect the LAN cable to the EtherNet/IP port of the PLC, and connect the USB cable to the USB port. Connect the Personal computer, Switching hub and PLC as shown in *5.2. Device Configuration*.

*The Robot Controller and the switching Hub are already connected in step 4 of 7.2.1.

Turn ON the power supply to the Switching hub and PLC.

The set IP address is displayed on the seven-segment LED indicators from right to left.

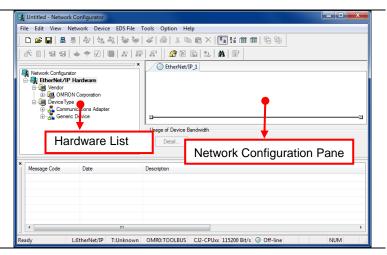
Afterwards, the rightmost 8 bits of the IP address are displayed in hexadecimal during normal operation.

7.3.2. Installing EDS Files

Install the EDS file in the Network Configurator.

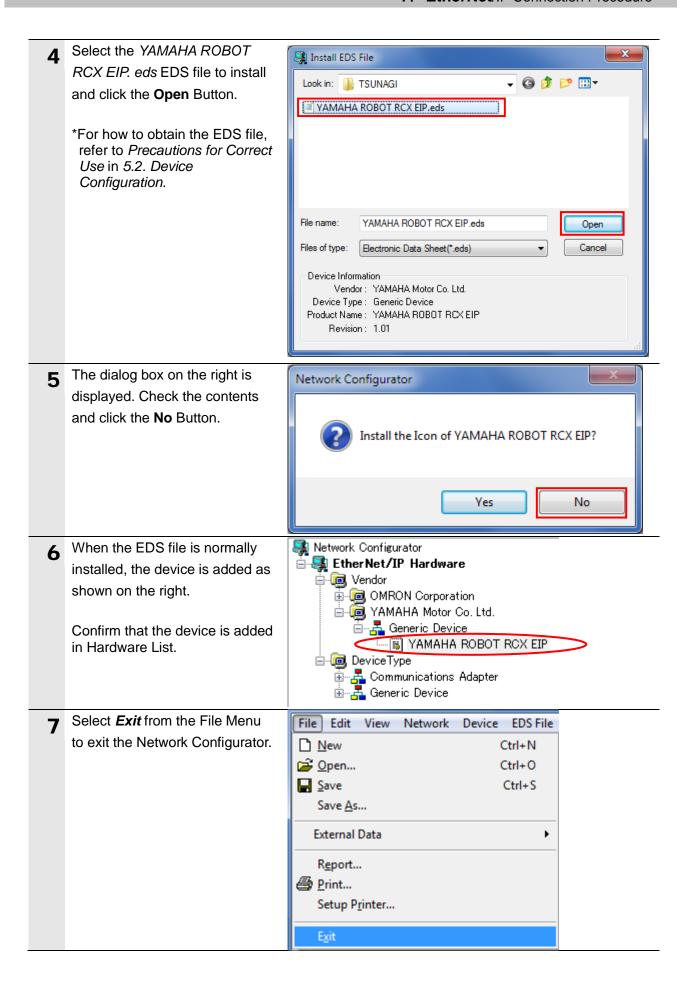
Install the CX-One in the Personal computer beforehand.

1 Right-click the Network
Configurator icon and select
Run as administrator from the menu.

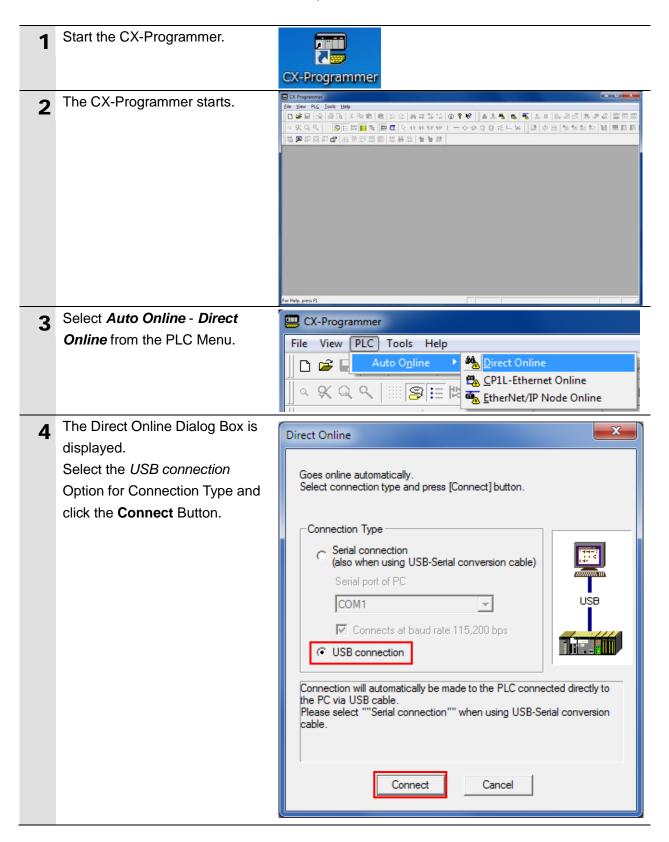

Precautions for Correct Use

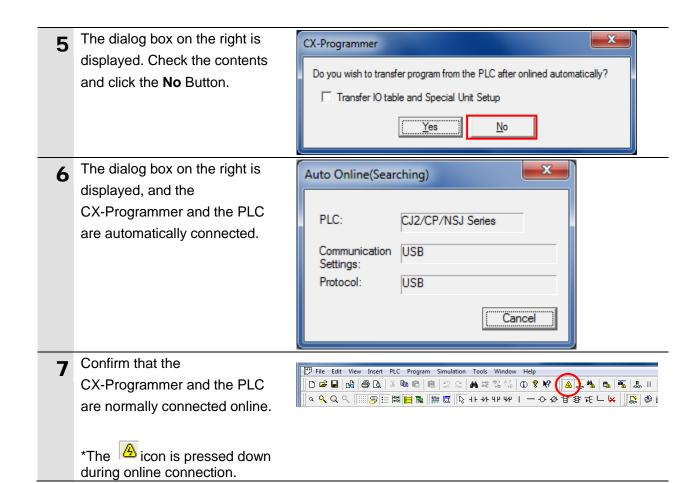
To manipulate EDS file, you must select "Run as administrator" as described in step 1 above to start the Network Configurator.


Otherwise, the following operations; "Install", "Create", "Delete" and "Creating EDS Index Files" that you selected from EDS File Menu; are not applied if you login with other user accounts due to user management for Windows security functions.


The Network Configurator starts.

The left pane is called Hardware List and the right pane is called Network Configuration Pane.


3 Select *Install* from the EDS File Menu.



7.3.3. Starting the CX-Programmer and Connecting Online with the PLC

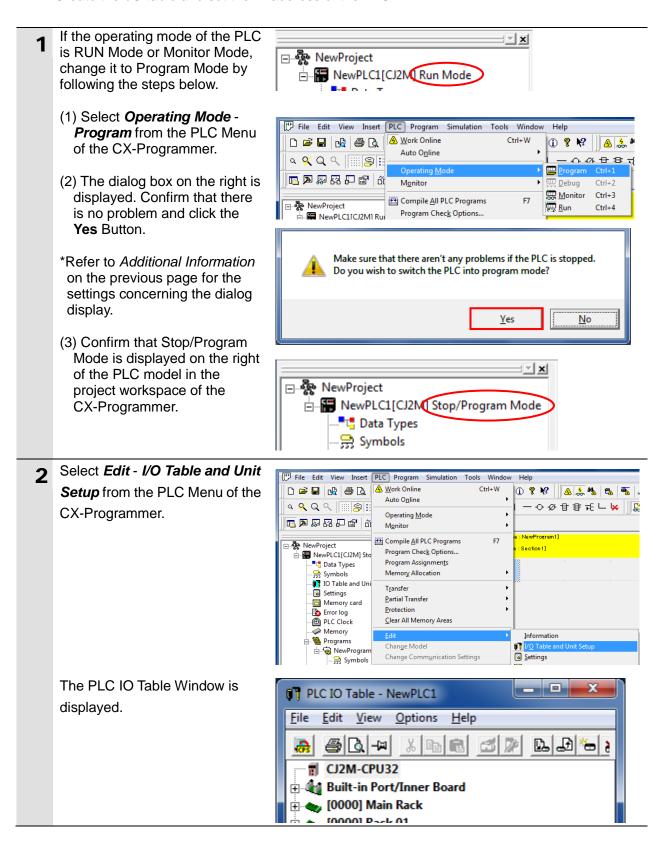
Start the CX-Programmer and connect online with the PLC. Install the USB driver in the Personal computer beforehand.

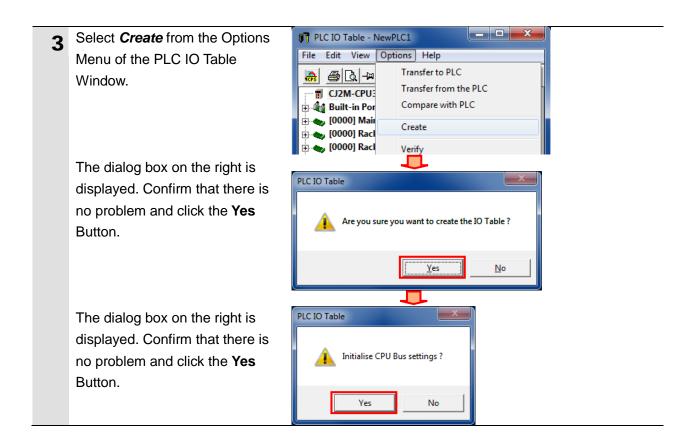
Additional Information

If an online connection cannot be made to the PLC, check the cable connection.

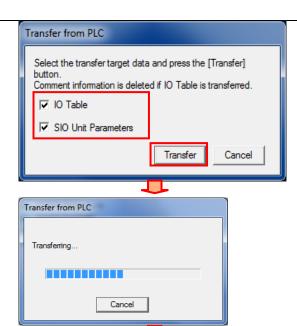
Or, return to step 1, check the settings and repeat each step.

Refer to Connecting Directly to a CJ2 CPU Unit Using a USB Cable in Chapter 3
Communications in PART 3: CX-Server Runtime of the CX-Programmer Operation Manual
(Cat. No. W446) for details.


Additional Information

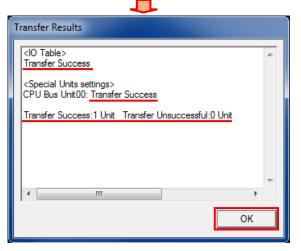

The dialog boxes explained in the following procedures may not be displayed depending on the environmental setting of CX-Programmer.

For details on the environmental setting, refer to *Options and Preferences* in *Chapter 3 Project Reference* in *PART 1: CX-Programmer* of *the CX-Programmer Operation Manual* (Cat. No. W446). This document explains the setting procedure when the *Confirm all operations affecting the PLC* Check Box is selected.


7.3.4. Creating the I/O Table and setting IP Addresses

Create the I/O table and set the IP address of the PLC.

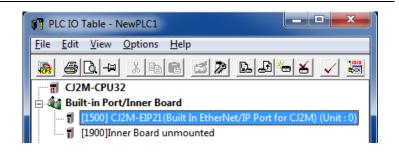
The Transfer from PLC Dialog
Box is displayed. Select the I/O
Table Check Box and the SIO
Unit Parameters Check Box,
and click the Transfer Button.

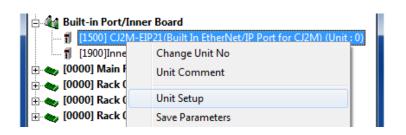


When the transfer is completed, the Transfer Results Dialog Box is displayed.

Confirm that the transfer was normally executed by referring to the message in the dialog box.

When the I/O table is created normally, the dialog box displays as follows:


Transfer Success: 1 Unit
Transfer Unsuccessful: 0 Unit



Click the **OK** Button.

- On the PLC IO Table Window, click + to the left of Built-in Port/Inner Board to display CJ2M-EIP21.
 - *The right figure displays the CPU Unit (built-in EtherNet/IP port) specified in 5.2. Device Configuration. When you use other applicable EtherNet/IP Units, the display position and name are different from this figure.

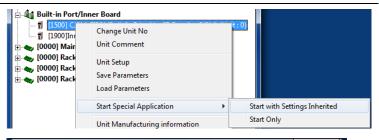
Right-click **CJ2M-EIP21** and select *Unit Setup*.

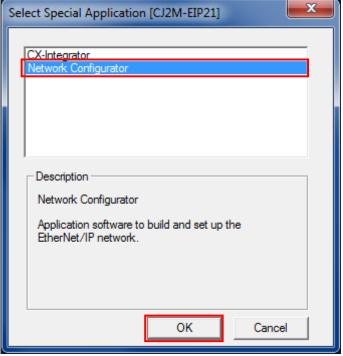
The Edit Parameters Dialog Box CJ2M-EIP21 [Edit Parameters] is displayed. TCP/IP Ethemet | FINS/UDP | FINS/TCP | FTP | Auto Adjust Time | Status Area | SNMP | SNMP Trap | Select the TCP/IP Tab. IP Address Not use DNS Use the following address 192 . 168 . 250 IP Address Primary DNS Server Make the following settings in 255 . 255 . 255 . 0 Sub-net Mask Secondary DNS Server 0 Default Gateway 0 0 the IP Address Field. Domain Name Get IP address from the BOOTP server The BOOTP setting is valid only for next unit restart (power restoration). Then, the BOOTP setting will be cleared. The obtained IP address will be automatically saved as system setting in the unit. · Select the Use the following IP Router Table address Check Box IP Address Gateway Address Delete • IP Address: 192.168.250.1 Broadcast All 1 (4.3BSD) • Subnet Mask: 255.255.255.0 C All 0 (4.2BSD) Transfer[Unit to PC] Transfer[PC to Unit] Click the Transfer [PC to Unit] Compare Restart Button. Set Defaults Cancel The dialog box on the right is **Edit Parameters** displayed. Confirm that there is no problem and click the Yes Parameters will be transferred to Unit. Button. Do you want to continue? Yes No **Edit Parameters** Transferring parameters (PC to Unit) **Edit Parameters** Confirm that parameters were normally transferred to the PLC, and click the Close Button.

Transfer successful

Close

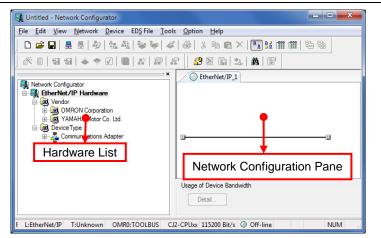
A dialog box on the right is **Edit Parameters** displayed. Check the contents It is necessary to restart the unit to do the transferred setting effectively. and click the Yes Button. Do you wish to restart the unit? Yes **Edit Parameters** When the Unit is restarted, the dialog box on the right is The unit was restarted. displayed. Check the contents and click the OK Button. OK Click the **Compare** Button to CJ2M-EIP21 [Edit Parameter: TCP/IP | Ethemet | FINS/UDP | FINS/TCP | FTP | Auto Adjust Time | Status Area | SNMP | SNMP Trap | confirm that the IP address is - IP Address Not use DNS correctly changed. • Use the following address C Use DNS 192 . 168 . 250 . 1 IP Address Primary DNS Server 0 Sub-net Mask 255 . 255 . 255 . 0 Secondary DNS Server 0 Default Gateway 0 . 0 . 0 . Domain Name Get IP address from the BOOTP server The BOOTP setting is valid only for next unit restart (power restoration). Then, the BOOTP setting will be cleared. The obtained if address will be automatically saved as system setting in the unit. IP Address Gateway Address Insert Delete Broadcast All 1 (4.3BSD)
 □ All 0 (4.2BSD) Transfer[Unit to PC] Transfer[PC to Unit] Compare Restart Set Defaults After confirming that parameters **Edit Parameters** 10 match, click the Close Button. Compare successful Close Click the **OK** Button on the Edit CJ2M-EIP21 [Edit Parameters] 11 TCP/IP | Ethemet | FINS/UDP | FINS/TCP | FTP | Auto Adjust Time | Status Area | SNMP | SNMP Trap | Parameters Dialog Box. Not use DNS Use the following address -C Use DNS 192 . 168 . 250 IP Address Primary DNS Server Sub-net Mask 255 . 255 . 255 Secondary DNS Server 0 Default Gateway 0 0 Domain Name Get IP address from the BOOTP serve Get IP address from the BOOT is server
The BOOTP setting is valid only for next unit
restart (power restoration).
Then, the BOOTP setting will be cleared.
The obtained IP address will be automatically
saved as system setting in the unit. IP Router Table IP Address Gateway Address Insert • All 1 (4.3BSD) • All 0 (4.2BSD) Transfer[Unit to PC] Transfer[PC to Unit] Compare Restart Set Defaults Cancel


7.4. Setting Up the Network

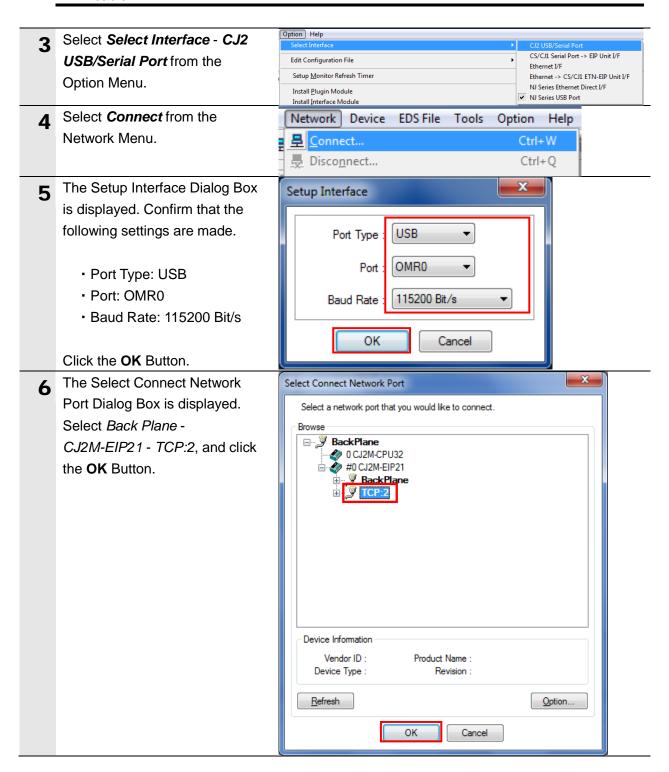

Set the tag data links for the EtherNet/IP.

7.4.1. Starting the Network Configurator and Connecting Online with the PLC Start the Network Configurator and connect online with the PLC.

1 Right-click CJ2M-EIP21 on the PLC IO Table Window, and select Start Special Application - Start with Settings Inherited.


The Select Special Application Dialog Box is displayed. Select Network Configurator and click the **OK** Button.

2 The Network Configurator starts.

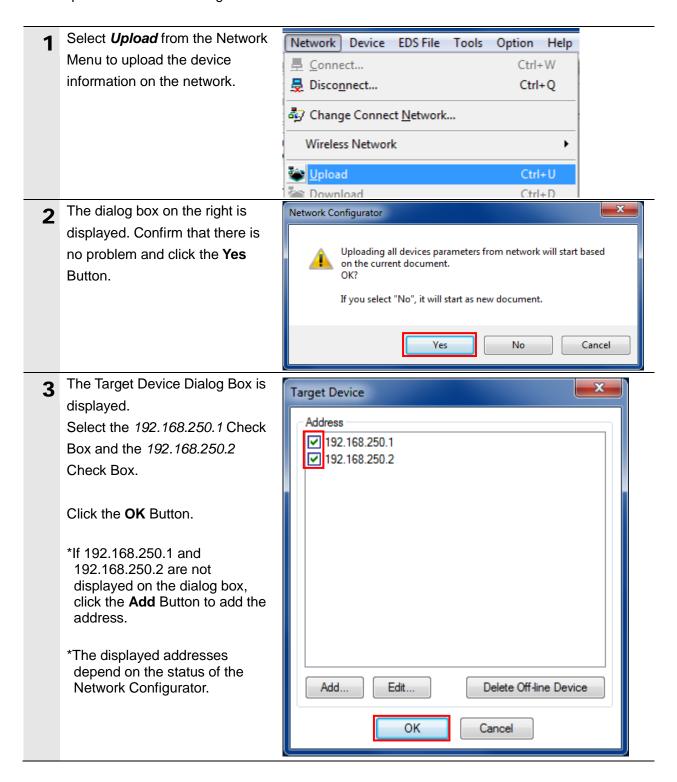

The left pane is called Hardware List and the right pane is called Network Configuration Pane.

Precautions for Correct Use

Confirm that the LAN cable is connected before taking the following procedure. When it is not connected, turn OFF the power supply to each device and then connect the LAN cable.

The Select Connected Network Select Connected Network Dialog Box is displayed. Please select a network where the connected network was supported. Click the **OK** Button. Target Network Create new network. Use the existing network. EtherNet/IP_1 OK. Cancel When an online connection is EtherNet/IP_1 established normally, the color of the icon on the figure changes to blue.

Additional Information


If an online connection cannot be made to the PLC, check the cable connection.

Or, return to step 3, check the settings and repeat each step.

For details, refer to 6.2.9 Connecting the Network Configurator to the Network in Section 6 Tag Data Link Functions of the EtherNet/IPTM Units Operation Manual (Cat. No. W465).

7.4.2. Uploading Network Configuration

Upload the network configuration.

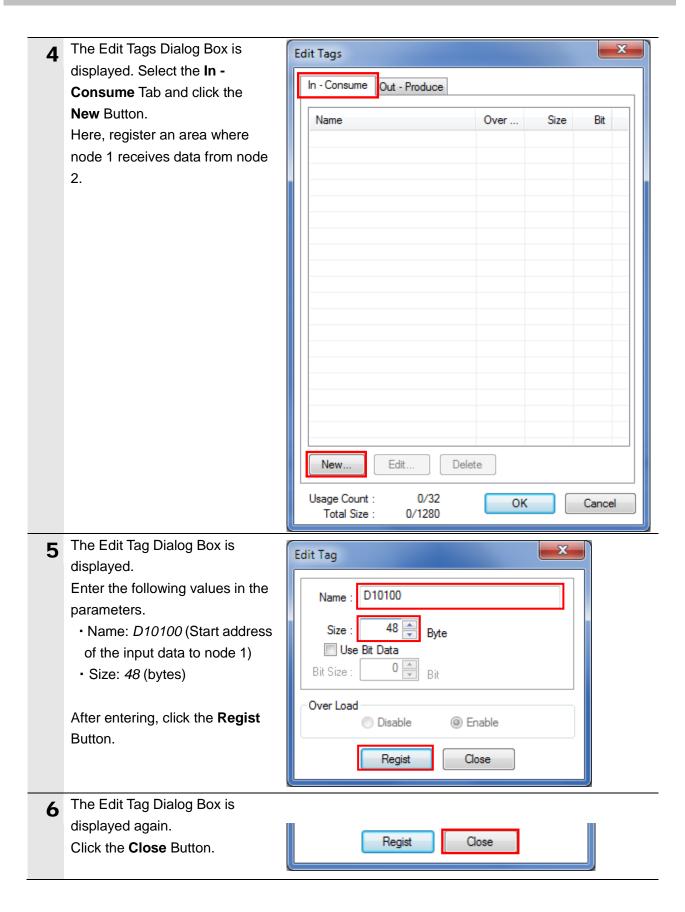
The device parameters are Network Configurator uploaded. When uploading is completed, the dialog box on the Network upload was completed. right is displayed. Check the contents and click the **OK** Button. OK After uploading is completed, EtherNet/IP_1 confirm that the IP address of each node is updated on the Network Configuration Pane as 192.168.250.1 192.168.250.2 follows: YAMAHA ROB... CJ2M-EIP21 IP address of node 1: 192.168.250.1 IP address of node 2: 192.168.250.2 Right-click the node 2 device <u>₩izard...</u> Parameter and select Parameter - Edit. Edit.. Monitor... АМАНА В 🚼 <u>О</u>реп... Reset Save as... The Edit Device Parameters ж **Edit Device Parameters** Dialog Box is displayed. Parameters Enter the following values and Value Parameter Name click the **OK** Button. · Output Size: 48 48 0001 Output Size • Input Size : 48 0002 Input Size 48 0003 RPI Range 150000 Reset

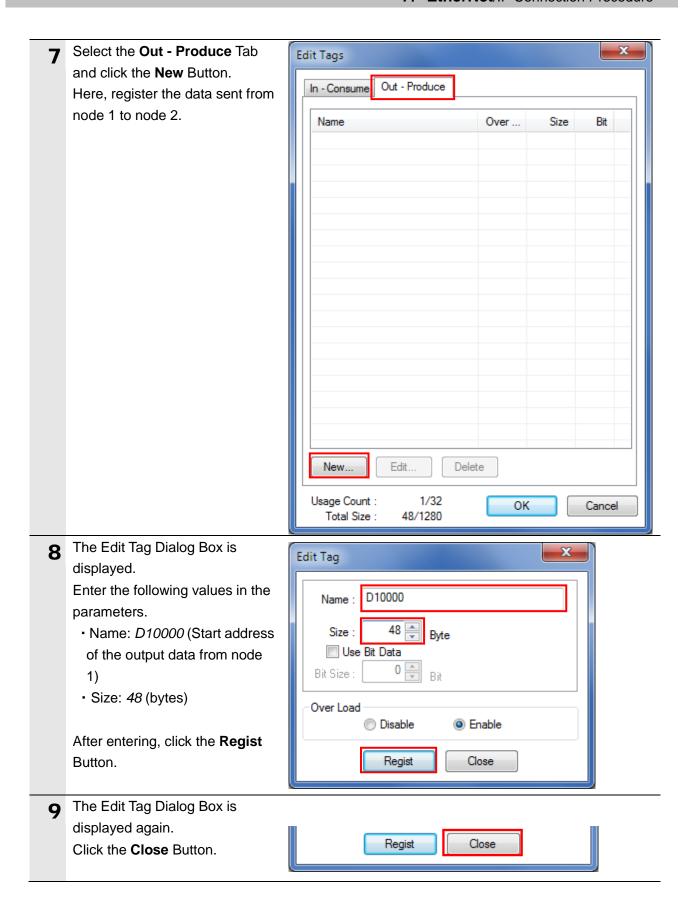
Default Setup

Collapse All

Cancel


Expand All


OK


7.4.3. Setting Tags

Register the tags of the send area and receive area.

This section explains the receive settings and send settings of the target device in order.

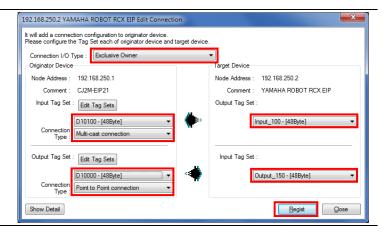
When you finish the registration, Edit Tags click the **OK** Button on the Edit In - Consume Out - Produce Tags Dialog Box. Size Name Over ... Bit D10000 Enable 48Byte New... Edit.. Delete Usage Count: 2/32 OK Cancel 96/1280 Total Size : The dialog box on the right is 11 Network Configurator displayed. Confirm that there is no problem and click the Yes The new Tags will be registered as Tag sets. Button. Yes Edit Device Parameters : 192.168.250.1 CJ2M-EIP21 The Edit Device Parameters 12 Connections Tag Sets Dialog Box is displayed again. In - Consume Out - Produce Select the **Connections** Tab. ₩ D10100 New... Edit... Delete Expand All Collapse All Import To/From File Edit Tags... Delete all of unused Tag Sets Usage Count: 2/32 OK Cancel

7.4.4. Setting the Connection

Associate the tags of the target device (that receives the open request) with the tags of the originator (that requests opening).

Select 192.168.250.2 in Unregister Device List Product Name Unregister Device List. 4 Click the **Down Arrow** Button that is shown in the dialog box. * Connections: 0/32 (O:0, T:0) Register Device List Edit Device Parameters : 192.168.250.1 CJ2M-EIP21 192.168.250.2 is registered in Connections Tag Sets the Register Device List Field. Unregister Device List Select 192.168.250.2 and click the **New** Button. Connections: 0/32 (O:0, T:0)
Register Device List • 192.168.250.1 CJ2M-EIP21 Variable roduct Name Target Variable Edit... Qelete Edit All... Qhange Target Node ID... To/From File OK Cancel The Edit Connection Dialog Box 192.168.250.2 YAMAHA ROBOT RCX EIP Edit Connection It will add a connection configuration to originator device.

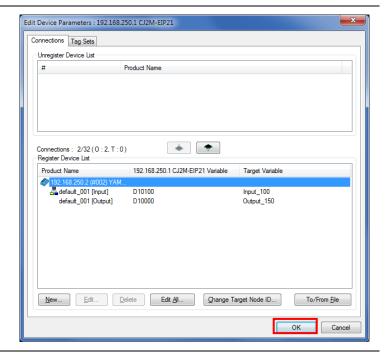
Please configure the Tag Set each of originator device and target device is displayed. Select Exclusive Connection I/O Type Owner from the Connection I/O Originator Device Node Address : 192.1(Listen Only ode Address: 192.168.250.2 Type pull-down list. Comment : YAMAHA ROBOT RCX EIP Input Tag Set : Edit Tag Sets Output Tag Set Set the values listed in the Input_100 - [48Byte] following table to the *Originator* Multi-cast connection Device Field and the Target Input Tag Set Output Tag Set : Edit Tag Sets Device Field. Output_150 - [48Byte]

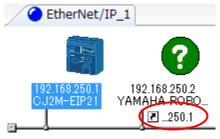

■Settings of connection

======================================			
Connection allocation		Set value	
Connection I/O Type		Exclusive Owner	
Originator Device	Input Tag Set	D10100-[48 Byte]	
	Connection Type	Multi-cast connection	
	Output Tag Set	D10000-[48 Byte]	
	Connection Type	Point to Point connection	
Target Device	Output Tag Set	Input_100-[48 Byte]	
-	Input Tag Set	Output_150-[48 Byte]	

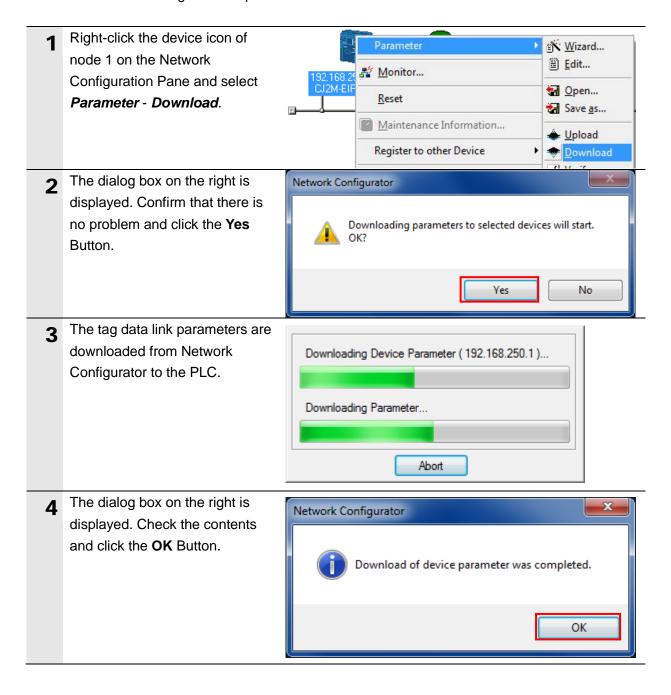
Show Detail

Regist <u>C</u>lose


Confirm that the settings are correct and click the Regist Button.


The Edit Connection Dialog Box is displayed again.
Click the Close Button.

The Edit Device Parameters
Dialog Box is displayed again.
Click the **OK** Button.



When the connection setting is completed, the registered node address is displayed under the device icon of node 2 on the Network Configuration Pane.

7.4.5. Transferring the Tag Data Link Parameters

Transfer the set tag data link parameters to the PLC.

7.5. Checking the EtherNet/IP Communications

Confirm that the EtherNet/IP tag data links are operated normally.

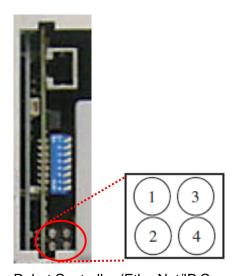
7.5.1. Checking the Connection Status

Check the connection status of EtherNet/IP.

- 1 Confirm that the tag data links are normally in operation by checking the LED indicators on each device.
 - PLC (EtherNet/IP Unit)
 The LED indicators in normal status are as follows:

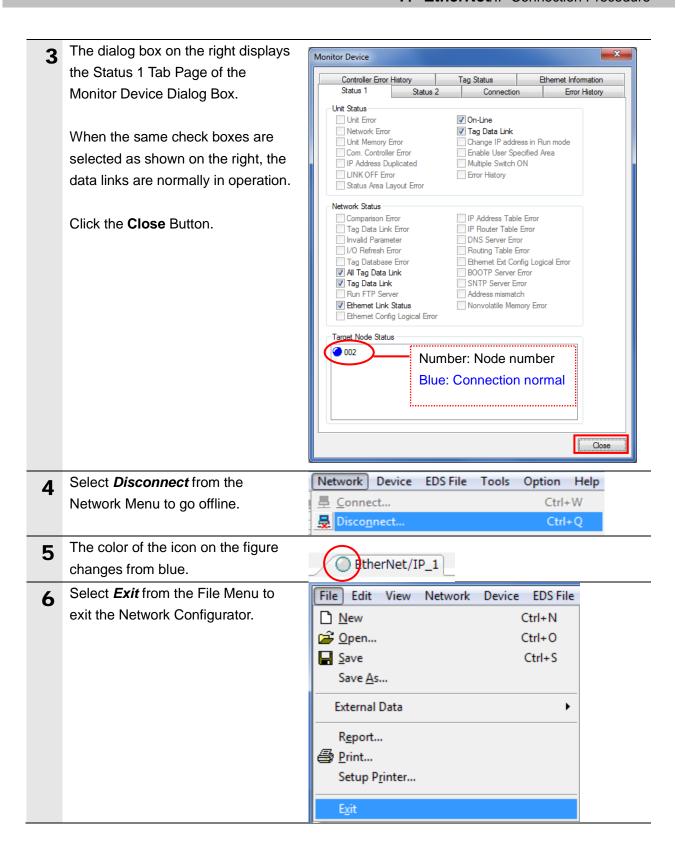
[MS]: Lit green [NS]: Lit green

[COMM]: Lit yellow


[100M] or [10M]: Lit yellow

- Robot Controller
 The LED indicators in normal status are as follows:
 - (1) [Activity]: Flashing green while packets are being sent and received
 - (2) [Network Status]: Lit green
 - (3) [Link]: Lit green
 - (4) [Module Status]: Lit green
- 2 Confirm that the tag data links are normally in operation by checking the status information on the Monitor Device Window of the Network Configurator.

Right-click the device icon of node 1 on the Network Configuration Pane and select *Monitor*.



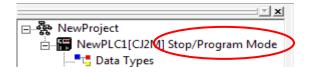
PLC (EtherNet/IP Unit)

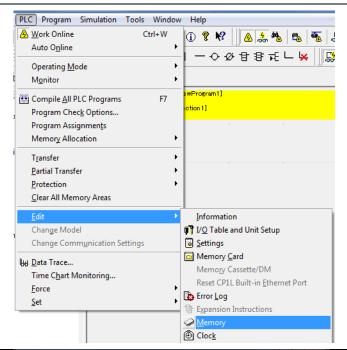
Robot Controller (EtherNet/IP Compatible Module)

7.5.2. Checking the Data that are Sent and Received

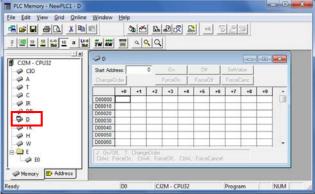
Confirm that the correct data are sent and received.

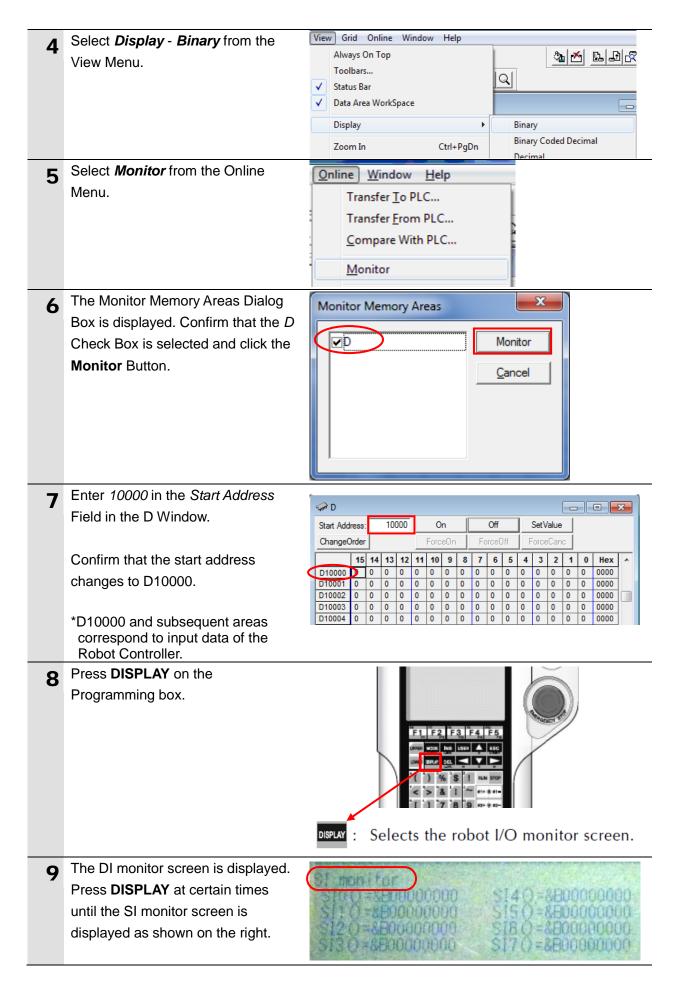
⚠ Caution

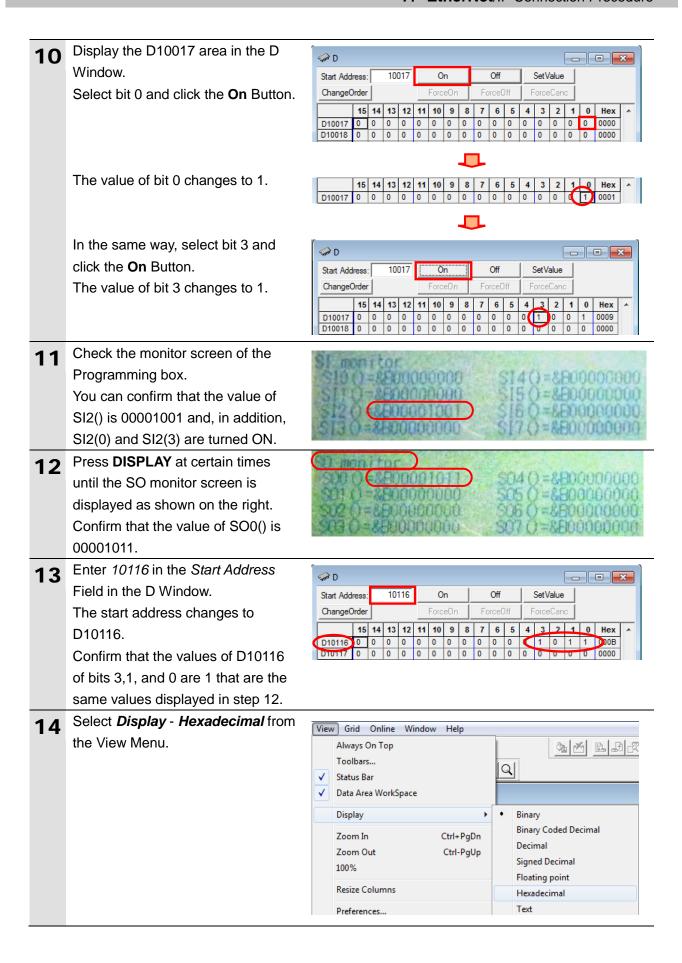

Confirm safety sufficiently before monitoring power flow and present value status in the Ladder Section window or before monitoring present values in the Watch window.

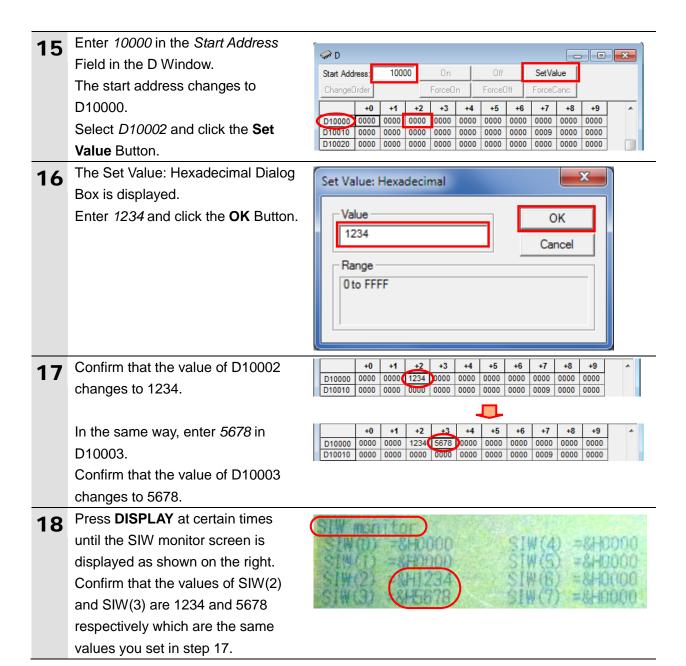

If force-set/reset or set/reset operations are incorrectly performed by pressing short-cut keys, the devices connected to Output Units may malfunction, regardless of the operating mode of the CPU Unit.

- 1 Confirm that the PLC is in Program Mode.
 - *If the PLC is not in Program Mode, change to Program Mode by referring to step 1 of 7.3.4.


 Creating the I/O Table and setting IP Addresses.

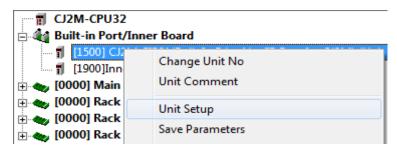



2 Select *Edit* - *Memory* from the PLC Menu.

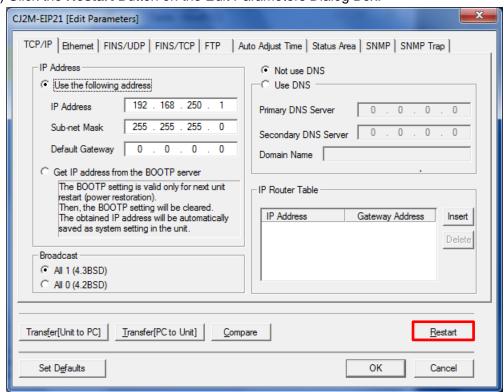


3 Double-click **D** from the list in the PLC Memory Window that is displayed.

8. Initialization Method

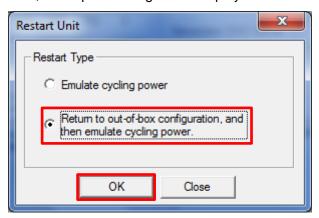

This document explains the setting procedure from the factory default setting. Some settings may not be applicable as described in this document unless you use the devices with the factory default setting.

8.1. Initializing the PLC

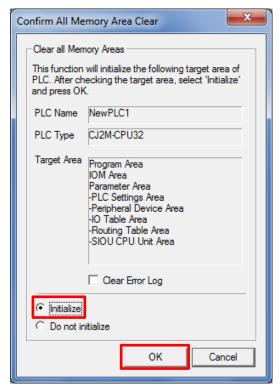

To initialize the settings of the PLC, it is necessary to initialize the CPU Unit and EtherNet/IP Unit. Change the PLC to PROGRAM mode before the initialization.

8.1.1. EtherNet/IP Unit

(1) Select Edit - I/O Table and Unit Setup from the PLC Menu of the CX-Programmer. Right-click the EtherNet/IP Unit on the PLC IO Table Window and select Unit Setup from the menu.


(2) Click the Restart Button on the Edit Parameters Dialog Box.

(3) A confirmation dialog box is displayed. Confirm that there is no problem and click the **Yes** Button.


On the Restart Unit Dialog Box that is displayed, select the *Return to out-of-box configuration, and then emulate cycling power* Option, and click the **OK** Button.

Then, a complete dialog box is displayed. Check the contents and click the **OK** Button.

8.1.2. **CPU Unit**

To initialize the settings of the CPU Unit, select *Clear All Memory Areas* from the PLC Menu of the CX-Programmer. On the Confirm All Memory Area Clear Dialog Box, select the *Initialize* Option and click the **OK** Button.

8.2. Initializing the YAMAHA MOTOR Robot Controller

For information on how to the initialize Robot Controller, refer to *5. Initialization* in *Chapter 7 Controller system settings* of the *YAMAHA 4-AXIS ROBOT CONTROLLER RCX240 User's Manual* (Cat. No. E123).

9. Revision History

Revision	Date of revision	Revision reason and revision page
code		
01	Jun. 2, 2014	First edition

OMRON Corporation Industrial Automation Company

Tokyo, JAPAN

Contact: www.ia.omron.com

Regional Headquarters OMRON EUROPE B.V. Wegalaan 67-69-2132 JD Hoofddorp The Netherlands Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ASIA PACIFIC PTE. LTD. No. 438A Alexandra Road # 05-05/08 (Lobby 2), Alexandra Technopark, Singapore 119967 Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON ELECTRONICS LLC One Commerce Drive Schaumburg, IL 60173-5302 U.S.A. Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower,
200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120, China
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200

Authorized Distributor:

© OMRON Corporation 2014 All Rights Reserved. In the interest of product improvement, specifications are subject to change without notice.

Cat. No. P602-E1-01